
# PRL-425N/425T DUAL CHANNEL UNIVERSAL DIFFERENTIAL RECEIVERS, NECL/TTL OUTPUTS

#### APPLICATIONS

- Differential LVDS, RS422, LVPECL, NECL, PECL or TTL to NECL, RS-422 or TTL Logic Level Translation
- Conversion of Differential Signals to Ground-Referenced Signals
- Essential Lab Tools for interfacing with High Speed Data Communications Equipment

### **FEATURES**

- 1.5GHz maximum Clock Rate for the PRL-425N and 300MHz for the PRL-425T
- Floating 100 Ω Universal Differential Inputs Accept LVDS, RS422, LVPECL, NECL, PECL or TTL Inputs
- Complementary 50  $\Omega$  ECL Outputs for PRL-425N
- Complementary 50  $\Omega$  TTL Outputs for PRL-425T
- Ready-to-Use 1.3 x 2.9 x 3.9-in. Modules include a ±8.5V/1.4A AC/DC Adapter

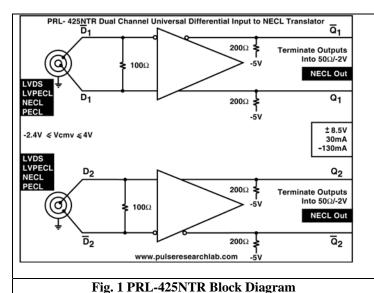


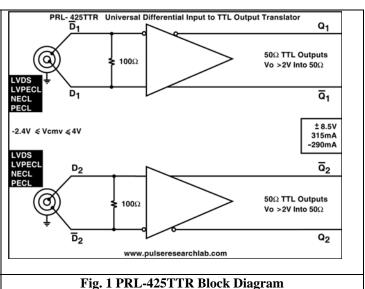
PRL-425NTR, Universal Differential Receiver (Triax), NECL Outputs

### DESCRIPTION

The PRL-425N and PRL-425T are dual channel, universal input differential receivers with SMA I/O connectors. The floating 100  $\Omega$  inputs are designed for interfacing with differential signals within the common mode range of -2.4V to +4V. Therefore, they are compatible with LVDS, RS422, LVPECL, LVTTL/CMOS, NECL, PECL or TTL differential input signals. The PRL-425N has complementary NECL outputs for driving 50  $\Omega$  loads terminated to -2V, floating 100  $\Omega$  loads or AC-coupled 50  $\Omega$  loads. The PRL-425T has complementary TTL outputs for driving 50  $\Omega$  or open circuit loads. They are also long line drivers, designed specifically for use with high speed data communications applications. Functional block diagrams of these devices are shown in Fig. 1 and Fig. 2.

Model numbers with suffix TR, such as PRL-425NTR or -425TTR, have Triax input connectors instead of SMA input connectors.


Each unit is supplied with a  $\pm 8.5 \text{ V}/1.4 \text{ A C/DC}$  Adaptor and housed in a  $1.3 \times 2.9 \times 3.9$ -in. extruded aluminum enclosure. Available accessories include voltage distribution modules and brackets for mounting multiple units.




1234 Francisco Street, Torrance, CA 90502 Tel: 310-515-5330 Fax: 310-515-0068 Email: sales@pulseresearchlab.com www.pulseresearchlab.com

## \*SPECIFICATIONS ( $0^{\circ} \text{ C} \leq \text{TA} \leq 35^{\circ} \text{C}$ )

|                                |                                         | PRL-425N |             |         | PRL-425T |             |          |      |
|--------------------------------|-----------------------------------------|----------|-------------|---------|----------|-------------|----------|------|
| SYMBOL                         | PARAMETER                               | Min      | Тур         | Max     | Min      | Тур         | Max      | UNIT |
| R <sub>inD</sub>               | Differential Input Resistance           | 95       | 100         | 105     | 95       | 100         | 105      | Ω    |
| R <sub>inC</sub>               | Common Mode Input<br>Resistance         |          | 5k          |         |          | 5K          |          | Ω    |
| $I_{DC}$                       | DC Input Current                        |          | 30/-130     | 40/-150 |          | 175/-365    | 185/-385 | mA   |
| V <sub>DC</sub>                | DC Input Voltage                        | ±7.5     | ±8.5        | ±12     | ±7.5     | ±8.5        | ±12      | V    |
| V <sub>AC</sub>                | AC/DC Adapter Input Voltage             | 103      | 115         | 127     | 103      | 115         | 127      | V    |
| V <sub>OHNL</sub>              | Output Hi Level, No Load                |          | -0.85       |         | 4        | 4.6         | 5        | V    |
| V <sub>OHFL</sub>              | Output Hi Level, Full load              | -1.05    | -0.95       | -0.75   | 2        | 2.3         | 2.5      | V    |
| V <sub>OLNL</sub>              | Output Lo Level, No Load                |          | -1.65       |         | -0.1     | 0           | 0.4      | V    |
| V <sub>OLFL</sub>              | Output Lo Level, Full Load              | -1.95    | -1.75       | -1.6    | -0.05    | 0           | 0.2      | V    |
| t <sub>PLH</sub>               | Propagation Delay to output ↑           |          | 1500        |         |          | 2200        |          | ps   |
| t <sub>PHL</sub>               | Propagation Delay to output ↓           |          | 1500        |         |          | 2200        |          | ps   |
| t <sub>r</sub> /t <sub>f</sub> | Rise/Fall Times <sup>1</sup>            |          | 500         | 850     |          | 1000        | 1300     | ps   |
| fmax I                         | Max Clock Frequency, SMA <sup>2</sup>   | 1500     | 1800        |         | 250      | 300         |          | MHz  |
| fmax II                        | Max Clock Frequency, Triax <sup>3</sup> | 500      | 625         |         | 250      | 300         |          | MHz  |
| t <sub>SKEW1</sub>             | Skew between outputs                    |          | 50          | 200     |          | 500         | 1200     | ps   |
| t <sub>SKEW2</sub>             | Skew from unit to unit                  |          | 100         | 400     |          | 750         | 1500     | ps   |
| VCM                            | Input Common Mode Voltage               | -2.4     |             | +4      | -2.4     |             | +4       | V    |
|                                | Size                                    |          | 1.3x2.9x3.9 |         |          | 1.3x2.9x3.9 |          | in.  |
|                                | Weight                                  |          | 5           |         |          | 5           |          | Oz   |





Notes: (1). The NECL 50  $\Omega$  output rise and fall times (20%-80%) are measured with both the Q and  $\overline{Q}$  outputs terminated into 50  $\Omega$ /-2 V. If one output is not terminated, both the rise and fall times will increase by approximately 15%, and output waveform degradation will occur. The TTL outputs rise and fall times (10%-90%) are measured with ground referenced 50  $\Omega$  terminations, and it is not necessary to terminate an unused output.

(2).  $f_{MAX}$  for PRL-425N is measured by dividing the outputs by four, using the PRL-255,  $\div 2$  and  $\div 4$  frequency divider module, and then measured using the PRL-550NQ4X, four channel ECL Terminators, connected to a sampling 'scope.  $f_{MAX}$  for PRL-425T is specified when  $V_{OH}$  drops below 2.0 V into 50  $\Omega$ 

(3). Units with the Trompeter CBBJR79 Triax input connectors are tested using the PRL-433N, complementary NECL input to Differential NECL output translator, and the Trompeter PCGOW10PCG-36 shielded twisted pair cables.



1234 Francisco Street, Torrance, CA 90502 Tel: 310-515-5330 Fax: 310-515-0068 Email: sales@pulseresearchlab.com www.pulseresearchlab.com