APPLICATIONS

- TTL/CMOS Clock Distribution
- 1:4 Fanout Line Driver
- High Speed Digital Communications System Testing
- Mini Modular Instrument ${ }^{\mathrm{TM}}$

FEATURES

- $\mathrm{f}_{\max }>135 \mathrm{MHz}$, typical
- Drives 100 ft of cable @ 80 MHz
- 2 ns Typical Output Rise \& Fall Times
- TTL Compatible 50Ω or $1 \mathrm{k} \Omega$ Input
- 500 ps typical channel-to-channel skew
- BNC or SMA I/O Connectors
- DC Coupled I/Os
- Self-contained $1.3 \times 2.9 \times 2.9-\mathrm{in}$. unit includes AC/DC Adapter

PRL-414B 1:4 TTL Fanout Line Driver

DESCRIPTION

The PRL-414B is a 1:4 fanout 50Ω TTL Line Driver. It is intended for distribution of high-speed clock and logic signals to multiple loads via long lines. The 50Ω back-terminated outputs can drive long lines with or without 50Ω load terminations. With 50Ω load terminations, however, all outputs of the PRL-414B can drive 100 ft of 50Ω cables at clock rates greater than 80 MHz . In one important application, the PRL-414B is used for distributing a precision clock signal to a number of test stations in the lab.

The input resistance of the PRL-414B can be selected to be either 50Ω or $1 \mathrm{k} \Omega$ by a switch. The $1 \mathrm{k} \Omega$ input is desirable when interfacing with low power circuits.

The PRL-414B is housed in a $1.3 \times 2.9 \times 2.9$-in. extruded aluminum enclosure and is supplied with a $\pm 8.5 \mathrm{~V} / \pm 1.4 \mathrm{~A} \mathrm{AC} / \mathrm{DC}$ Adapter. A maximum of four units can share a single PRL-760B AC/DC adapter using the PRL-730 or PRL-736 voltage distribution modules. If mounting is desired, a pair of the \# 35001420 mounting brackets can accommodate any two PRL modules of the same length. Please refer to the Accessories section of www.pulseresearchlab.com for more detail.

All I/Os are DC coupled and have BNC or SMA connectors, as follows:

- PRL-414B, 1:4 Fanout 50Ω TTL Line Driver, BNC I/Os.
- PRL-414B-SMA, 1:4 Fanout 50Ω TTL Line Driver, SMA I/Os.

The PRL-414B may be ordered without the power supply as part number PRL-414B-OEM or PRL-414B-SMA-OEM.
The PRL-414B may also be ordered with a guaranteed $\leq 500 \mathrm{ps}$ channel to channel skew, by appending "-500ps" to the model number, e.g. PRL-414B-500ps or PRL-414B-SMA-500ps. An additional charge will apply.

A block diagram showing the equivalent input and output circuits of the PRL-414B is shown in Fig. 1.

SPECIFICATIONS* ($0^{\circ} \mathrm{C} \leq \mathrm{TA}^{\mathbf{~}} \mathbf{3 5}^{\circ} \mathrm{C}$)

Unless otherwise specified, dynamic measurements are made with the input set to 50Ω and all outputs terminated into 50Ω.

SYMBOL	PARAMETER	Min	Typ	Max	UNIT	Comments
$\mathrm{R}_{\text {in Low }}$	Input Resistance Low Range	49.5	50	50.5	Ω	
$\mathrm{R}_{\text {in }} \mathrm{Hi}$	Input Resistance High Range	990	1000	1010	Ω	
Rout	Output Resistance		50		Ω	
$\mathrm{V}_{\text {IL }}$	TTL input Low Level	-0.5	0	0.5	V	
V_{IH}	TTL input High Level	2.0	2.4	5.0	V	
Vol	TTL Output Low Level	0	0.25	0.5	V	$\mathrm{R}_{\mathrm{L}}=50 \Omega$
Voh1	TTL Output High Level	2.2	2.5		V	$\mathrm{R}_{\mathrm{L}}=50 \Omega @$ DC
Voн2	TTL Output High Level	4.4	5		V	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega @$ DC
$\mathrm{I}_{\mathrm{DC} 1}$	DC Input Currents		280	350	mA	$\mathrm{f} \leq 100 \mathrm{MHz}$
$\mathrm{I}_{\mathrm{DC} 2}$	DC Input Currents		220	250	mA	$\mathrm{f}=50 \mathrm{MHz} \mathrm{sq}$. wave ${ }^{(1)}$
$\mathrm{V}_{\text {DC }}$	DC Input Voltages	7.75	8.5	12	V	
$\mathrm{V}_{\text {AC }}$	AC/DC Adaptor Input Voltage	103	115	127	V	
$\mathrm{T}_{\text {PLH }}$	Propagation Delay to output \uparrow		10	12	ns	
$\mathrm{T}_{\text {PHL }}$	Propagation Delay to output \downarrow		8	12	ns	
$\mathrm{t}_{\mathrm{r}} / \mathrm{f}_{\mathrm{f}}$	Rise/Fall Times ($10 \%-90 \%$)		2.2/1.8	3	ns	$\mathrm{f}=50 \mathrm{MHz} \mathrm{sq}$. wave
$\mathrm{T}_{\text {SKEW }}$	Skew between any 2 outputs		500	1500	ps	$\mathrm{f}=50 \mathrm{MHz}$ sq. wave
$\mathrm{F}_{\text {max1 }}$	Max. Clock Frequency ${ }^{(2)}$		100	120	MHz	RG58C/U Cable length $=3 \mathrm{ft}$
$\mathrm{F}_{\text {max } 2}$	Max. Clock Frequency ${ }^{(3)}$		80			RG58C/U Cable length $=100 \mathrm{ft}$
PWmin	Minimum Pulse Width		4		ns	\uparrow Input
PWmin	Minimum Pulse Width		6		ns	\downarrow Input
	Size	$1.3 \times 2.9 \times 2.9$			in.	
	Weight	5			Oz	

Fig. 1: PRL-414B Functional Block diagram

Notes:
(1). For sharing a single PRL-760A, $\pm 8.5 \mathrm{~V}, \pm 1.4 \mathrm{~A} \mathrm{AC} / \mathrm{DC}$ adapter, the total current should not exceed 1.4 A .
(2). $\mathrm{f}_{\text {MAX }}$ should not exceed 120 MHz ; otherwise, damage of the unit due to overheating may result.
(3). $\mathrm{f}_{\mathrm{MAX} 2}$ is measured by connecting a second PRL-414B at the end of the 100 ft cable.

